Fibrinogen-endothelial cell interaction in vitro: a pathway mediated by an Arg-Gly-Asp recognition specificity.

نویسندگان

  • L R Languino
  • S Colella
  • A Zanetti
  • A Andrieux
  • J J Ryckewaert
  • M H Charon
  • P C Marchisio
  • E F Plow
  • M H Ginsberg
  • G Marguerie
چکیده

It has been previously shown that fibrinogen (FG) associates specifically with human umbilical vein and bovine aortic endothelial cells (EC) in culture and induces EC migration. In the present study, we have investigated whether the FG-EC interaction is mediated by an Arg-Gly-Asp (RGD) recognition specificity and whether EC membrane proteins related to platelet GPIIb-IIIa are involved. Highly purified radioiodinated human FG, containing no detectable fibronectin, interacted with cultured human and bovine EC in suspension in a time-dependent and specific manner. The binding was inhibited by EDTA. Two polyclonal antibodies to platelet GPIIb-IIIa, which immunoprecipitated a heterodimer molecule from EC, inhibited FG binding to EC. These same antibodies inhibited FG-induced EC migration in a dose-dependent manner as measured in a Boyden chamber. Preabsorption of the antibodies with purified platelet GPIIb-IIIa markedly reduced both inhibitory activities. A series of synthetic RGD-containing peptides inhibited FG binding to EC and FG-induced EC migration. Gly-Arg-Gly-Asp (GRGD) was the most active peptide tested in inhibiting FG binding and EC migration (ID50 of 30 microM), and conservative substitutions in the RGD sequence markedly reduced inhibitory activity (ID50 greater than 1,000 microM). These results indicate that FG binding and EC migration are events mediated by an RGD recognition specificity and that EC surface proteins immunologically related to the GPIIb-IIIa complex on platelets are involved in this recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity of synthetic peptide analogs of adhesive proteins in regard to the interaction of human endothelial cells with extracellular matrix.

Vascular endothelial cells, providing a nonthrombogenic surface to the lumenal aspect of blood vessels, are anchored to matrix adhesion molecules in the subendothelium through their respective receptors belonging to a superfamily of integrins. We analyzed the reactivity of synthetic peptide analogs of adhesive proteins toward human umbilical vein endothelial cells (HUVEC), assaying their detach...

متن کامل

Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen

Mitogenesis, cellular aggregation, and motility follow upon the interaction of fibrinogen with certain defined cell surface receptors. In addition to circulating platelets and vascular endothelium, monocytes express what appears to be a receptor for fibrinogen. Evidence is presented here that the leukocyte adhesion receptor Mac-1 can be specifically induced to bind fibrinogen with characteristi...

متن کامل

Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors

Thrombospondin is a 420,000-D glycoprotein that has recently been shown to have several properties in common with the members of a class of adhesive proteins. To characterize further the adhesive properties of thrombospondin, we have studied its ability to support cell attachment. Thrombospondin adsorbed to plastic dishes supports the attachment of human endothelial and smooth muscle cells and ...

متن کامل

The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets.

The Arg-Gly-Asp sequence resides in the cell attachment region of fibronectin. Arg-Gly-Asp-containing peptides support fibroblast attachment, inhibit fibroblast adhesion to fibronectin, and inhibit fibronectin binding to thrombin-stimulated platelets. In view of the similarities between the binding of fibronectin, fibrinogen, and von Willebrand factor to stimulated platelets, we have examined t...

متن کامل

Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro

Human umbilical vein endothelial cells (ECs) have been shown to attach to a substratum of fibrinogen (fg). Later, ECs undergo spreading, organization of thick microfilament bundles of the stress fiber type, and formation of focal contacts (adhesion plaques) that correspond to accumulation of vinculin at the cytoplasmic aspect of the ventral membrane. The rate of attachment to fg and the type of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 1989